Robust removal of short-duration artifacts in long neonatal EEG recordings using wavelet-enhanced ICA and adaptive combining of tentative reconstructions.
نویسندگان
چکیده
The goal of this paper is to describe a robust artifact removal (RAR) method, an automatic sequential procedure which is capable of removing short-duration, high-amplitude artifacts from long-term neonatal EEG recordings. Such artifacts are mainly caused by movement activity, and have an adverse effect on the automatic processing of long-term sleep recordings. The artifacts are removed sequentially in short-term signals using independent component analysis (ICA) transformation and wavelet denoising. In order to gain robustness of the RAR method, the whole EEG recording is processed multiple times. The resulting tentative reconstructions are then combined. We show results in a data set of signals from ten healthy newborns. Those results prove, both qualitatively and quantitatively, that the RAR method is capable of automatically rejecting the mentioned artifacts without changes in overall signal properties such as the spectrum. The method is shown to perform better than either the wavelet-enhanced ICA or the simple artifact rejection method without the combination procedure.
منابع مشابه
Automatic Removal of Sparse Artifacts in Electroencephalogram
In this paper we propose a method to identify and remove artifacts, that have a relatively short duration, from complex EEG data. The method is based on the application of an ICA algorithm to three non-overlapping partitions of a given data, selection of sparse independent components, removal of the component, and the combination of three resultant signal reconstructions in one final reconstruc...
متن کاملEvaluation of the Hidden Markov Model for Detection of P300 in EEG Signals
Introduction: Evoked potentials arisen by stimulating the brain can be utilized as a communication tool between humans and machines. Most brain-computer interface (BCI) systems use the P300 component, which is an evoked potential. In this paper, we evaluate the use of the hidden Markov model (HMM) for detection of P300. Materials and Methods: The wavelet transforms, wavelet-enhanced indepen...
متن کاملRemoval of Ocular Artifacts from EEG Signals by Fast RLS Algorithm using Wavelet Transform
This paper presents an adaptive filtering method to remove ocular artifacts in the electroencephalogram (EEG) records. The major concern in analyzing EEG signal is the presence of ocular artifacts in EEG records caused due to various factors. It is essential to design specific filters to remove the artifacts in EEG records. Here, we proposed an adaptive filtering method that uses RLS (Recursive...
متن کاملWavelet-Based Artifact Identification and Separation Technique for EEG Signals during Galvanic Vestibular Stimulation
We present a new method for removing artifacts in electroencephalography (EEG) records during Galvanic Vestibular Stimulation (GVS). The main challenge in exploiting GVS is to understand how the stimulus acts as an input to brain. We used EEG to monitor the brain and elicit the GVS reflexes. However, GVS current distribution throughout the scalp generates an artifact on EEG signals. We need to ...
متن کاملA Hybrid Pre-Processing Techniques for Artifacts Removal to Improve the Performance of Electroencephalogram (EEG) Features Extraction
Electroencephalogram (EEG) blend reflects the summation of the synchronous activity of thousands or millions of neurons that have parallel spatial direction. EEG Signals are extracted from Human Brain. While Extracting an EEG Signals, large amount of data with diverse categories will be collected from the human skull. To investigate and categorize the valuable information from the EEG recording...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physiological measurement
دوره 33 8 شماره
صفحات -
تاریخ انتشار 2012